
Abstraction development for the 0/1 Knapsack problem
Eli Jaffe

Mentored by Dr. Peter Schwartz

The purpose of this investigation was to identify relationships
between these abstractions and any changes in runtime and/or accuracy,
then use those relationships to predict the best abstraction for a given
problem. Both abstractions maintained almost perfect accuracy, so the
analysis focused on runtime. Graph 1 and Graph 2 show the significant
increase in both efficiency and consistency with these abstractions.
These increases show that both of these abstractions are effective and
allows for analysis of when they are most effective. Graph 3 shows that
SymKnap outperforms ValDens at lower values of Weight/Capacity.
This is because ValDens removes items until total weight drops below
the capacity. Otherwise, it would remove items from an already viable
solution. When Weight/Capacity is high, ValDens can remove more
items before reaching that point and can decrease the problem size more.
However, SymKnap is relatively unaffected by Weight/Capacity ratio
because it does not deal with removing items directly from the problem.
Based on the shift in Graph 3,the chooser algorithm predicted which
abstraction should run faster. It successfully produced an average
runtime below either abstraction showing that its predictions are reliable.

It is important to acknowledge possible areas of error in this model.
Despite efforts in controlling all other variables during problem solution,
intricacies in how Java™ allocates memory may have skewed individual
data points. In the future, more controlled hardware for testing would be
preferable.

This investigation could be further developed by finding more
relationships and including them in the chooser algorithm. With more
relationships, different aspects of the problem instance can also be
considered when predicting the best abstraction. Implementing more
characteristics of the problem will increase the prediction ability of the
chooser algorithm.

Conclusions

Two abstractions of the 0/1 Knapsack problem were developed, Value
Density (ValDens) and Symmetrical Knapsack (SymKnap). A base
algorithm for the Branch and Bound solver was taken from an online
source with the permission of its owner. The ValDens and SymKnap
abstractions were then coded. ValDens eliminates all items below the
average value/weight ratio, also called value density. Items with low
value density are generally less useful, so their elimination should
minimally affect solution accuracy. Decreasing the problem size lowers
the number of paths the Branch and Bound must consider, which
decreases the runtime. SymKnap sorts the items by similarity based on
their value densities and then alternates adding them to one of two sets.
One of these sets is solved as a Knapsack with half the original capacity.
For each item in the solved set, SymKnap adds corresponding items
from the second set. This abstraction halves the size of the problem,
which decreases runtime. Since similar items play similar roles, the final
solution should be relatively accurate.

One thousand problem instances were randomly generated with max
value/min value ratios between 100 and 1,000 and weight/capacity ratios
between 30 and 2,500. Each instance was solved with no abstraction,
ValDens, and SymKnap and each abstraction’s runtime and solution
were recorded for use in determining the most effective abstraction for
each problem instance. A choosing algorithm was created in Excel® to
return the runtime of the predicted best abstraction.

Methods

Chandra, A. K., Hirschberg, D. S., & Wong, C. K. (1976). Approximate algorithms for
some generalized knapsack problems. Theoretical Computer Science, 3(3), 293-304.

Sahni, S. (1975). Approximate algorithms for the 0/1 knapsack problem. Journal of the
ACM (JACM), 22(1), 115-124.

References

Results
The 0/1 Knapsack is a famous problem in combinatorial optimization.

The aim is to find a specific subset of a larger set of items so their
summed weight is below a certain capacity and their summed value is
maximized. This problem often arises in computer processor allocation.
It is NP-complete, meaning its computation time grows exponentially
with the problem size (Chandra, 1976). A common solution method for
the 0/1 Knapsack is called the Branch and Bound. This method creates a
tree of all possible item combinations, then uses a bounding algorithm to
decide if a path could produce an optimal solution. However, large
instances of these problems often still require abstraction. In computer
science, abstraction is ignoring details of a problem to obtain an
approximate solution in a more reasonable amount of time (Sahni, 1975).
Development of a reliable abstraction method is vital to solving these
problems in a reasonable amount of time. This investigation explored the
relationships between two different abstraction methods and two
different aspects of the problem instance in order to predict when these
methods would be most effective.

Introduction

Acknowledgements
First and foremost I would like to thank my classmate Kevin Merrick

for his assistance in coding this project. I would also like to thank my
faculty advisor Mr. Sloan who kept me organized and on schedule
throughout the year.

Graph 1: Shows
difference in average
runtimes for
problems solved
without abstraction,
with ValDens, with
SymKnap, and with
the choosing
algorithm.

Graph 2: Shows
difference in
standard deviation in
runtimes for
problems solved
without abstraction,
with ValDens, with
SymKnap, and with
the choosing
algorithm.

Graph 1 shows a significant decrease in average runtime for each of
the abstractions. On average, SymKnap lowers runtime more than
ValDens. The choosing algorithm reduced average runtime slightly
more than SymKnap. As seen in Graph 2, abstraction also decreased the
standard deviation of runtimes. SymKnap lowered the spread much more
than ValDens and slightly more than the choosing algorithm. Linear
regression lines from runtime versus Capacity/Weight were translated
into the inverse linear curves shown in Graph 3. The ValDens and
SymKnap curves intersect when Weight/Capacity is approximately
963.53. At this point, ValDens becomes the more effective abstraction.

Graph 3: Shows the
translated inverse
linear relationship
used to find the
point where
SymKnap becomes
less efficient than
ValDens.

Average Runtime for All Abstractions
and Chooser Algorithm

Standard Deviation of Runtimes for All
Abstractions and Chooser Algorithm

Runtime vs. Weight/Capacity
(Translated)

